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ABSTRACT

Phase equilibrium calculations and phase stability analysis play a significant role in the simulation, design
and optimization of separation processes in chemical engineering. These are very challenging problems
due to the high non-linearity of thermodynamic models. Global optimization methods are required in
order to solve these complex, non-convex optimization problems. Recently, stochastic global optimiza-
tion algorithms were applied to solve these problems. However, these optimization methods have some
parameters that need to be tuned in order to obtain good reliability and efficiency. In this study, we intro-
duce three global optimization algorithms developed by our group for phase and chemical equilibrium
calculations, namely, unified bare-bones particle swarm optimization (UBBPSO), integrated differential
evolution (IDE) and IDE without tabu list and radius (IDE_N), which have fewer control parameters to be
tuned. The performance of these three stochastic algorithms is tested and compared in order to iden-
tify their relative strengths for phase equilibrium and phase stability problems. The phase equilibrium
problems include both without and with chemical reactions. Our results show that the effectiveness
of the stochastic methods tested depends on the stopping criterion. Overall, IDE has achieved better

performance for the phase equilibrium, chemical equilibrium and phase stability problems.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Phase equilibrium calculations (PEC) and phase stability (PS)
problems are crucial during the analysis of chemical process. Novel
processes handle complex mixtures, severe operating conditions,
or even incorporate combined unit operations (e.g., reactive distil-
lation, extractive distillation, etc.). The reliable computation of the
thermodynamic state for these systems is especially important due
to the direct impact of wrong estimations on energy consumption
and operating costs. When a mixture is analyzed, PEC involves not
only the calculation of number of moles of each phase but also the
number of stable phases where PS is used to determine the stabil-
ity of the calculated composition at equilibrium. In general, number
and type of phases, at which Gibbs free energy function achieves
the global minimum, are unknown in PEC problems, and so sev-
eral calculations may have to be performed using different phase
configurations to identify the stable equilibrium state. Therefore,
the unknown phases of general PEC increase the complexity of the
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optimization problem. Both PEC and PS problems require the global
optimization of a specific function; usually, these have to be solved
many times during a simulation. Specifically, PS analysis requires
the minimization of tangent plane distance function (TPDF), while
the Gibbs free energy function needs to be minimized for PEC[1]. A
reactive phase equilibrium calculation (rPEC) or chemical equilib-
rium, is performed if any reaction is possible in the system under
study, and the objective function must satisfy the chemical equi-
librium constraints.

In general, there are several challenges in finding the global opti-
mum of Gibbs free energy function. First, number and type of phases
where the thermodynamic function achieves the global optimum
are usually unknown a priori. Second, high non-linearity of ther-
modynamic models, non-convexity of Gibbs free energy function
and the presence of a trivial solution in the search space make
PEC and PS problems difficult to solve. Moreover, for a fixed num-
ber of phases and components, Gibbs free energy function may
have local optimal values that are very comparable to the global
optimum value, which makes it challenging to find the global
optimum [2]. Thus, PEC, rPEC and PS problems require a reliable,
efficient and robust global optimization algorithm. Further, appli-
cation of global optimization techniques to these problems is very
challenging.
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Many deterministic and stochastic optimization algorithms
have been proposed and tested for finding the global optimum
in PEC, rPEC and PS problems, particularly in the past two
decades [2-11]. Deterministic global optimization studies have
been applied to different PEC, PS and/or rPEC problems. Homo-
topy continuation methods have been applied to PEC and PS
problems [8,12]. Although homotopy-continuation algorithm guar-
antees global convergence to a single solution, it does not guarantee
global convergence to multiple solutions. Even using complex
search spaces, the success of continuation methods in finding all
solutions cannot be assured. Burgos-Solorzano et al. [11] applied
interval Newton method for solving the PEC problems under high
pressure. This method can solve non-linear equations to find all
solutions lying within the variable bounds. It requires an inter-
val extension of the Jacobian matrix, and involves setting up and
solving the interval Newton equation for a new interval. How-
ever, it is very hard to find all solutions and Jacobian matrix for
the complex systems, and the computational time is significant for
multi-component systems.

Recently, Rossi et al. [13] applied convex analysis method to PEC
and rPEC problems. This method employs the CONOPT solver in
GAMS (general algebraic modeling system). The proposed method
can solve PEC problems with high efficiency and reliability but it
requires the convexity of the model. Branch and bound methods
have been applied to many applications including PS and PEC prob-
lems[14,15].In general, these methods are often slow and require a
significant numerical effort that grows exponentially with problem
size [16,17]. Besides, branch and bound methods require certain
properties of the objective function, and problem reformulation is
usually needed to guarantee the global convergence. Note that the
problem reformulation can be very difficult to perform, especially
for complex thermodynamic models such as equations of state
with non-traditional mixing rules. Finally, Nichita et al. applied
the tunneling method to perform stability analysis of various sys-
tems [18,19] and to PEC problems [17,20]. Their results suggest
that tunneling method is a robust and efficient tool for these appli-
cations even for difficult cases. However, it requires feasible and
improved initial estimates for reliability and computational effi-
ciency, respectively [17]. For an unknown system, it is very difficult
to provide a feasible and good initial estimate for the algorithm.

In summary, the deterministic methods can guarantee con-
vergence to the global optimum but they usually require certain
properties such as continuity, a priori information of the system;
reformulation of the problem may be needed depending on the
characteristic of the thermodynamic models, and the computa-
tional time grows exponentially with problem size. In contrast,
stochastic methods are quite simple to implement and use. They
do not require any assumptions or transformation of the original
problems, can be applied with any thermodynamic model, and yet
provide a high probabilistic convergence to the global optimum.
They can often locate the global optimum in modest computational
time compared to deterministic methods [2].

In recent years, several stochastic global optimization tech-
niques have been applied to solve the PS and PEC problems in
non-reactive and reactive systems [1-6,17-22]. These algorithms
include simulated annealing (SA), genetic algorithms (GA), tabu
search (TS), differential evolution (DE), random tunneling method
(RT) and particle swarm optimization (PSO). In particular, Srinivas
and Rangaiah [3,23] studied DE and TS for non-reactive mix-
tures, and proposed two versions of DE with tabu list (DETL),
in order to improve the performance of the optimization algo-
rithm. Srinivas and Rangaiah [22] evaluated the RT on a number of
medium sized problems including vapor-liquid, liquid-liquid and
vapor-liquid-liquid equilibrium problems. RT can locate the global
optimum for most of the examples tested but its reliability is low for
problems having a local minimum comparable to the global mini-

mum. In a recent study, Bonilla-Petriciolet and Segovia-Hernandez
[6] tested different versions of PSO for PS and PEC for both reactive
and non-reactive systems, and their results show that classical PSO
is a reliable method with good performance.

Systematic and comprehensive comparison of different global
optimization methods is challenging. However, some comparison
of stochastic with deterministic algorithms for phase equilibrium
calculations can be found in the literature. Teh and Rangaiah
[24,25] compared GA and TS with several deterministic algo-
rithms such as Rachford-Rice-mean value theorem-Wegstein's
projection method, Accelerated successive substitution method,
Nelson’s method, simultaneous equation-solving method, linearly
constrained minimization method, GLOPEQ and enhanced interval
analysis method for solving phase equilibrium calculations. Their
comparison shows that some stochastic methods can be more effi-
cient than deterministic algorithms.

Most of the stochastic methods have some parameters to be
tuned for different problems in order to improve the convergence
to the global optimum. Selection of proper parameter values for
different problems usually cost a lot of effort, and an improper
choice can result in computational inefficiency or poor reliability.
In order to overcome such difficulties, this work evaluates three
global optimization algorithms (unified bare-bones particle swarm
optimization, UBBPSO; integrated differential evolution, IDE; IDE
without tabu list and radius, IDE_N) that have fewer algorithm
parameters, for PEC, rPEC and PS problems involving multiple com-
ponents, multiple phases and popular thermodynamic models. The
performance of UBBPSO, IDE and IDE_N on PEC, rPEC and PS prob-
lems are compared and discussed based on both reliability and
computational efficiency using practical stopping criteria.

The rest of this paper is organized as follows. The classical PSO
and UBBPSO algorithms are described in Section 2. The IDE algo-
rithm is described in Section 3. Description of PEC, PS and rPEC
problems is given in Section 4. Implementation of UBBPSO, IDE_N
and IDE is presented in Section 5. Section 6 presents the results
and discusses the performance of UBBPSO, IDE_N and IDE on PEC,
PS and rPEC problems. Finally, the conclusions of this work are
summarized in Section 7.

2. Description of classical PSO and UBBPSO methods
In this study, the global optimization problem to be solved is:
Minimize F(X) (1)

with respect to D decision variables: X=(X'X2,...X4,...XP).

The upper and lower bounds of these variables are
1 2 d D 1 2 d D
XmaX,Xmax, coos Xinaxo s Xmax and X XS oo X XD
respectively.

2.1. Classical PSO

PSO is one of the population-based stochastic global optimiza-
tion technique proposed by Eberhart and Kennedy [13] based on
the social behavior of animals such as bird flocking, fish schooling
and swarm theory. Every particle in the population represents a
point in the D-dimensional search space, and serves as a potential
solution. The movement of each particle is guided by its respective
velocity which is influenced by the personal best position (pbest)
found so far by the particle and also by the neighborhood best posi-
tion (nbest) found so far by neighboring particles. Note that nbest
can include gbest (global best) and Ibest (local best). Even though
PSO has many similarities with evolutionary computation tech-
niques, evolution operators such as crossover and mutation are not
implemented in its algorithm.
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The classical PSO algorithm [26] updates the particles in the
population by:

Vid’k+1 = Vl.d‘k +c1 Randl?(pbestf’k —Xid"‘)

+cyRand2¢(gbest? — Xid’k) (2)

Xid,kﬂ _ Xid,k + Vid,k+l (3)

Here, V,.d’k and Xl.d’k are, respectively, dth element of velocity and
position vectors of ith particle at kth iteration, and Rand1 and Rand?2
are two uniformly distributed random numbers in the range [0,1],
which are different for each dimension of each particle in each iter-
ation, as indicated by the superscript and subscript. In Eq.(2), c; and
¢, are the weights for the stochastic acceleration used to adjust the
movement of the particle’s dimension towards the corresponding
pbest and gbest dimensions. Thus, they are commonly termed as the
acceleration coefficients; they are also known as learning factors
(i.e., cognitive and social parameters) towards the best positions
[27].

2.2. Development of unified BBPSO

In order to eliminate the parameters in classical PSO and to
have an adaptive balance between exploration and exploitation, the
dynamic adaptation of parameters is applied. Specifically, a particle
can be updated using Gaussian normal distribution with mean and
standard deviation given by

dk (pbestf’k + gbest?)

i 3 (4)
ol.d’k = |pbestid’k — ghest!| (5)
ke _ N(ud*, o) ifu[0,1] < 0.5 ©

' pbestf’k othewise

Here, ,u?’k and al.d’k are the mean and absolute difference of pbest
and gbest, respectively, in dth dimension of the ith particle at kth
iteration. In Eq. (6), N represents Gaussian normal distribution with
mean ,uf’k and standard deviation al.d’k. The use of Gaussian normal
distribution to update the particle is known as BBPSO [28]. How-
ever, the algorithm still faces some difficulties such as premature
convergence, and can be trapped easily at local optimum. For exam-
ple, if the current particle’s pbest objective function value happens
to be the same as that of nbest (which can be gbest or Ibest depend-
ing on the topology employed), then the mean in Eq. (6) is the value
of the particle’s pbest position itself and the standard deviation is
zero. In such a case, the nbest-index particle (i.e., the particle whose
pbest is the same as nbest) will not be updated.

In order to overcome the premature convergence of BBPSO,
Zhang et al. [29] proposed a BBPSO with crossover and mutation
operators of DE based on gbest and lbest neighborhood topol-
ogy, namely, BBPSO-MC-gbest and BBPSO-MC-Ibest. In both these
algorithms, mutation and crossover operators of DE algorithm are
employed for updating only the nbest-index particle by:
pbest® 1 0.5 x (pbest®k —pbestg’k) ifU[0,1] < 0.5

Xid,k+l _ it iy

nbestlFj Otherwise

wherei + iy # iy # i3, which means pbest’s in the above equation
are randomly chosen. Hence, there is 50% chance that the nbest-
index particle is updated by the mutation operator of DE, whose
information comes from the randomly chosen pbest’s other than
the current particle’s pbest. In this case, the mutation and crossover
rates of 0.5 each are implemented without any selection operation

Set population size (NP)

Generate the initial population, evaluate objective value of each
particle, and find global best particle and local best particles

T

Set iteration = |

— S
Set particle, i=1

r

Use local best topology | ‘

Use global best topology

Generate new particles using BBPSO strategy
with mutation and crossover operators (Eq.7)

|
l |
|
|

Evaluate objective function for particle i |

‘ Update global best and local best particles |

s the stopping criterion
satisfied ?

Iteration =
e

Yes

¥

Local optimization starting from the best
solution found by the global search

Stop and print results

Fig. 1. Flowchart of UBBPSO algorithm.

of DE. This approach enables the nbest-index particle to retain the
good variables and has a possibility of changing the non-performing
variables. The two BBPSO-MC algorithms have been tested on a
number of benchmark functions and applied to parameter esti-
mation in vapor-liquid equilibrium data modeling problems [29].
The results show that BBPSO-MC-gbest and BBPSO-MC-Ibest have
their own strong points. In order to combine the strong features of
the BBPSO-MC-gbest and BBPSO-MC-lbest, here we combine both
versions into UBBPSO by using 50% probability for gbest and lbest
topologies. The flowchart of UBBPSO is shown in Fig. 1; towards the
end, a local optimizer is used to refine the best solution found by
the global search.

3. Description of IDE method

DE is another population-based stochastic global optimization
algorithm proposed by Storn and Price [30]. It has been gaining
popularity in the recent past due to its simplicity and capability
to handle non-convex and non-differentiable objective functions.

fori=1,2,...,D (7)

Moreover, DE has relatively faster convergence and high reliability
to find the global optimum [1,31]. Its main steps are initializa-
tion, mutation, crossover and selection, whose details can be found
in [30]. In the recent past, DE has been successfully applied to
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Step 1: Initialization

Initialize the generation counter, G = 0. Randomly initialize NP individuals (target
vectors, X; ¢ = {x}g, ..., x%;} fori=1,2, ..., NP) within the search range [Xnin, Xmax],
where Xmin = {xrlnin' R xr?lin} and Xmax = {xrlnaxr (EN] xrlr)lax}-

FOR i =1to NP
FORj=1toD
xiJ'G =%} + 1and (0, 1) gy — Xohin)
END FOR
END FOR

Evaluate all the individuals and send them to tabu list
Set gbest equal to the global best individual

Step 2: Generation, G

WHILE the stopping criterion is not satisfied
Calculate the mutation strategy probabilities, Py ¢ based on the previous generations
Use stochastic universal sampling to assign mutation strategy for each individual based on Py g
FOR k = 1 to K/ where K is the total number of mutation strategies/

CRmy = median(CRMemory;)

IF F(U;¢) < F(gbest)

END IF
ELSE nfk.G = nfk‘G +1
END IF
END FOR
G=G+1
END WHILE

FOR i =1to NP
CRy; = Normrnd(CRmj, 0.1) /Assign crossover rate for each individual i /
END FOR
END FOR
FOR i = 1to NP
DO
Fi = Normrnd(0.5, 0.3)  /Assign mutation factor/
Mutation IGenerate a mutation vector, Vi g = {v{, ..., v}/
Crossover IGenerate a trial vector, U; ¢ = {ulg, ..., ufs}/

Check boundary violations of the trial vector and correct them
UNTIL the tabu check is satisfied (Euclidean distance > TR)
Evaluate the trial vector and send it to tabu list

IFF(U;c) < F(X;) [Selection/

Xie = Uigi F(Xig41) = FUig)
NSk = NSk + 1; Store CRy;into CRMemoryy

gbest = U, F(gbest) = F(U; ;)

Local optimization starting from the gbest found by the global search
Output: Solution found by local optimizer

Fig. 2. Pseudo-code of IDE algorithm.

diverse fields, e.g., phase equilibrium, phase stability problems and
parameter estimation problems [1-3], fed-batch bioreactor [32],
synthesis of cost-optimal heat exchange networks [33], etc.

In DE, users need to choose suitable values of parameters (such
as scaling factor F and crossover rate Cr), and also proper mutation
strategy for different problems in order to enhance convergence to
the global optimum. These selections usually require lot of effort,
and an improper choice can result in computational inefficacy. In
order to overcome such problems, researchers have been studying
strategies to adapt the parameters of DE [34-36]. Recently, Zhang
and Rangaiah [37] proposed IDE by integrating the strong features
of tabu search, self-adaptive strategy of [23] and a local optimizer.
The tabu list of tabu search can prevent revisiting the same area,
the self-adaptive strategy can tune the parameters and mutation
strategies based on the learning experience of previous genera-
tions, and the local optimizer efficiently improves the accuracy of
the best point found by the global algorithm.

The pseudo-code of IDE algorithm is presented in Fig. 2. The
algorithm generates the initial population of NP individuals using
uniformly distributed random numbers within the search space.

The objective function of each individual is evaluated and sent to
the tabu list. Generation counter, G is initialized to 1, probability of
each mutation strategy, P to 0.25 and median value of crossover
rate for each strategy, Crm; to 0.5. P is updated based on the
learning experience from the previous generations. The median of
crossover rate values (Cr;y) stored inside CRMemory, is used for
Crmy,. During each generation, a strategy for each target individual
is selected with probability Py using stochastic universal selection
method [38].

The Cr;, for each trial individual is calculated based on normal
distribution with mean of Crm,, and standard deviation of 0.1. For
generating a new trial individual, mutation factor F is calculated
based on normal distribution with mean of 0.5 and standard devia-
tion of 0.3, and then a new trial individual is produced according to
assigned mutation strategy, F and Cr;j. A boundary violation check
is performed to make sure the decision variables of the new trial
individual is within the search space. If any bound is violated, the
corresponding decision variable of the trial individual is replaced
by a randomly generated value within its bounds. The trial indi-
vidual is then compared with the points in the taboo list. If it is
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near to any point in the tabu list, the trial individual is rejected
because it may not bring any new information about the objective
function and only increases the number of function evaluations.
The rejected individual is replaced by generating another trial indi-
vidual through the mutation and crossover operations. Else, the
algorithm continues as follows.

After evaluating the objective function of the trial individual
generated, the selection step is performed based on the fitness of
the objective function value and the tabu list is updated dynam-
ically to keep the latest points in the list. If the trial individual
is selected, it replaces the target individual in the population
immediately, and Cr; is stored into Crmy and the success of the
corresponding mutation strategy is updated. The above steps are
repeated for all NP target individuals in the population, which com-
pletes one generation. The updating of Pyg, calculation of Crmy,
mutation, crossover and selection operations are repeated for the
next generation until the stopping criterion is satisfied. Then, the
best point obtained over all generations is refined using the local
optimizer.

The IDE algorithm without tabu list (TL) and tabu radius (TR),
which is named as IDE_N, is applied to PEC, rPEC and PS problems
to assess the benefits of using tabu concept. The generation steps
of IDE_N are exactly same with IDE (Fig. 2) except the absence of
tabu list and tabu check operations.

4. Description of PEC, PS and rPEC problems

A brief description of the global optimization problems includ-
ing the objective function, decision variables and constraints, for
PEC, PS and rPEC problems is given in the following sections.

4.1. Description of PEC problems

A mixture of substances at a given temperature, T, pressure, P
and total molar amount may separate into two or more phases. The
composition of the different substances is the same throughout
a phase but may significantly vary in different phases at equilib-
rium. If there is no reaction between the different substances, then
it is a phase equilibrium problem. There are mainly two differ-
ent approaches for PEC: equation solving approach and Gibbs free
energy minimization approach. The former involves solving a set of
non-linear equations arising from mass balances and equilibrium
relationships. The latter involves the minimization of the Gibbs free
energy function. Although the first approach seems to be faster and
simple, the solution obtained may not correspond to the global min-
imum of Gibbs free energy function. Moreover, it needs a priori
knowledge of phases existing at equilibrium [5]. Classic thermody-
namics indicate that minimization of Gibbs free energy is a natural
approach for calculating the equilibrium state of a mixture. Hence,
this study uses Gibbs free energy minimization for PEC, which was
used to determine phase compositions at equilibrium in several
works [4,5,25,39].

The mathematical formulation involves the minimization of a
non-convex objective function (Gibbs free energy) subject to mass
balance equality constraints and bounds that limit the range of vari-
ables. In a non-reactive system with ¢ components and 7 phases,
the objective function for PEC is

N

1
j=1i=1 j=1i=1

where ny, X;;, v and @;; are, respectively, the moles, mole fraction,
activity coefficient and fugacity coefficient of componentiin phase
Jj, and ¢j; is the fugacity coefficient of pure component. Eq. (8) must

be minimized with respect to n; taking into account the following
mass balance constraints:

T
Znij:z,-np i=1,...,c 9)
j=1

O<nj=<znp i=1,...,c j=1,...,7 (10)
where z; is the mole fraction of component i in the feed and ng is
the total moles in the feed.

To perform unconstrained minimization of Gibbs energy func-
tion, we can use new variables instead of n;; as decision variables.
The introduction of the new variables eliminates the restrictions
imposed by material balances, reduces problem dimensionality and
the optimization problem is transformed into an unconstrained
one. For multi-phase non-reactive systems, new variables 8 € (0,1)
are defined and employed as decision variables by using the follow-
ing expressions:

Tlﬂ:ﬂ,‘lZ,‘nF i=1,...,c (]])
j-1
=By (zme =Y mm | i=1,....¢ j=2,...7-1 (12)
m=1
-1
ninzzinF—Znim i=1,...,c (13)
m=1

Using this formulation, all trial compositions satisfy the mass bal-
ances allowing the easy application of optimization strategies [3,6].
For Gibbs energy minimization, the number of phases existing at
the equilibrium is assumed to be known a priori, and the number
of decision variables Bj; is ¢ (r — 1) for non-reactive systems.

Details of PEC problems used in this study are in Table 1. In
most of the reported studies, PEC problems tested are assuming
that the number and type of phases are known; such problems are
also known as phase split calculations. In this study too, the same
assumption is made, and the problems tested are simply referred
to as PEC problems.

4.2. Description of phase stability problems

Phase stability (PS) problem is used to determine the thermo-
dynamic state that corresponds to the global minimum of Gibbs
free energy. Its results can be used to find good starting points to
improve the reliability of PEC. PS is often tested using the tangent
plane criterion, which states that a phase is stable provided that
the tangent plane generated at the corresponding composition lies
below the molar Gibbs energy surface for all compositions [12,14].
As an alternative, Mitsos and Barton [40] reinterpreted the Gibbs
tangent plane stability criterion via a Lagrangian duality approach,
as the solution of the dual problem of a primal problem that mini-
mizes Gibbs free energy subject to material balances for solving the
PS problems.

One common implementation of the tangent plane criterion
[12,14] is to minimize the tangent plane distance function (TPDF),
defined as the vertical distance between the molar Gibbs energy
surface and the tangent plane at the given phase composition.
Specifically, TPDF is given by

c
TPDF = yil ], - i) (14)
i=1
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Table 1
Details of PEC and PS problems studied.

PEC and PS No. System Feed conditions Thermodynamic models Global optimum for
Equilibrium Stability
1 n-Butyl acetate + water ng=(0.5,0.5) at 298 K and NRTL model and parameters —0.020198 —0.032466
101.325kPa reported by Rangaiah [5].
2 Toluene +water +aniline ng=(0.29989, 0.20006, NRTL model and Model —0.352957 —0.294540
0.50005) at 298 K and parameters reported by
101.325kPa McDonald and Floudas [39].
3 Ny +Cy +Cy neg=(0.3,0.1,0.6) at 270K and SRK EoS with classical mixing —0.547791 -0.015767
7600 kPa rules. Model parameters
reported by Bonilla-Petriciolet
etal. [21].
4 Cy +H,S np=(0.9813,0.0187) at 190K SRK EoS with classical mixing —0.019892 —0.003932
and 4053 kPa rules. Model parameters
reported by Rangaiah [5].
5 Cy+C3+C4+C5+Cq nr=(0.401, 0.293, 0.199, SRK EoS with classical mixing —1.183653 —0.000002
0.0707,0.0363) at 390K and rules. Model parameters
5583 kPa reported by Bonilla-Petriciolet
etal. [21].
6 C1+Cy+C3+C4+C5+Cg+Cyq+Cy7s np=(0.7212, 0.09205, 0.04455, SRK EoS with classical mixing —0.838783 —0.002688
0.03123,0.01273,0.01361, rules. Model parameters
0.07215, 0.01248) at 353 K and reported by Harding and
38500 kPa Floudas [14].
7 Cq+Cy+C3+iCq +Cyq +iCs5 +Cs5 +Cg +iCy5 ng=(0.614, 0.10259, 0.04985, SRK EoS with classical mixing —0.769772 —1.486205
0.008989, 0.02116, 0.00722, rules. Model parameters
0.01187, 0.01435, 0.16998) at reported by Rangaiah [5].
314K and 2010.288 kPa
8 C1+Cy+C3+C4+C5+C+Cy+Cg+Co+Cyo np=(0.6436, 0.0752, 0.0474, SRK EoS with classical mixing -1.121176 —0.0000205

0.0412, 0.0297, 0.0138, 0.0303,
0.0371, 0.0415, 0.0402) at

rules. Model parameters
reported by Bonilla-Petriciolet

435.35K and 19150 kPa

etal. [21].

where ;L,-|y and u; , are the chemical potentials of component

i calculated at compositions y and z, respectively. Eq. (14) is the
objective function, and the constraint and bounds are

c

Zyizlando <yi<1 (15)
i=1

For stability analysis of a phase/mixture of composition z, TPDF
must be globally minimized with respect to composition of a trial
phasey. If the global minimum value of TPDF is zero, then the speci-
fied phase and others sharing the same tangent plane would coexist
at equilibrium. The decision variables in phase stability problems
arey; fori=1,2,...,c.

The constrained global optimization of TPDF can be transformed
into an unconstrained problem by using decision variables g;
instead of y; as follows:

niyzﬁ,-z,-np i=1,...,c (16)
and

n
Yi= —=r— i=1,...,c (17)

DMy

where ng is the total moles in the feed mixture used for stability
analysis, and n;, are the conventional mole numbers of compo-
nent i in trial phase y. The number of decision variables is still ¢ for
the unconstrained minimization of TPDF. Thus, the unconstrained
global optimization problem for phase stability analysis is:

min TPDF(f)

0<Bi<1 i=1,...,c (18)

The calculation of TPDF is straightforward with almost any ther-
modynamic model because:

0 ~
i _/'L,' _ X;Q; _ ™
et —ln< o ) = In(x;) (19)

1

where Ry is the universal gas constant, u; is the chemical potential
of component i at the mixture, and ;L? is the chemical potential of
pure component i. More details of PS problem formulation can be
found in [5]. Characteristics of PS problems used in this study are
summarized in Table 1.

4.3. Description of rPEC or (chemical equilibrium) problems

In rPEC problems, also known as chemical equilibrium prob-
lems, reactions increase the complexity and dimensionality of
phase equilibrium problems, and so phase split calculations in reac-
tive systems are more challenging due to non-linear interactions
among phases and reactions. The phase distribution and compo-
sition at equilibrium of a reactive mixture are determined by the
global minimization of Gibbs free energy subject to element/mass
balances and chemical equilibrium constraints [11,41]. Therefore,
to determine the phase equilibrium compositions in reactive sys-
tems, it is necessary to find the global minimum of the free energy
with respect to mole numbers of components in each of the phases
subject to constraints and bounds. The expressions for Gibbs free
energy and its mathematical properties depend on the structure of
the thermodynamic equation(s) chosen to model each of the phases
that may exist at equilibrium [2].

Recently, Bonilla-Petriciolet et al. [2] concluded that the
constrained Gibbs free energy minimization approach has the
advantage of requiring smaller computing time compared to the
unconstrained approach, is straightforward and suitable for chem-
ical equilibrium calculations. In summary, for a system with ¢
components and 7t phases subject to r independent chemical reac-
tions, the constrained objective function for rPEC is

T
Fobj =8 = Y 1N KegN ™" per (20)
j=1

where g is given by Eq. (8), InKeq is a row vector of logarithms of
chemical equilibrium constants for r independent reactions, N is



H. Zhang et al. / Fluid Phase Equilibria 310 (2011) 129-141 135

an invertible, square matrix formed from the stoichiometric coeffi-
cients of a set of reference components chosen from r reactions, and
Nreris acolumn vector of moles of each of the reference components.
This objective function is defined using reaction equilibrium con-
stants, and it must be globally minimized subject to the following
mass balance restrictions [2]:

T

-1 -1 i
E (n,»jfl/,-N nref,j)zn,-pfv,»N NMeef,p 1= 1,...
i=1

,C—T (21)

where n;f is the initial moles of component i in the feed. These
mass balance equations can be rearranged to reduce the number
of decision variables of the optimization problem and to eliminate
equality constraints, which are usually challenging for stochastic
optimization methods. Thus, Eq. (21) is rearranged to reduce the
number of decision variables using the following expression:

-1
Niz = Nip — ViN™ " (Nyef, F — Nref, )
-1

— Z(Tlu — U,‘Nflnreﬁj) i=1,...

j=1

,C—T (22)

Using Eq. (22), the decision variables for rPEC are c (7 — 1) +r mole
numbers (n;;). Then, the global optimization problem can be solved
by minimizing Eq. (20) with respect to ¢ (w — 1) +r decision vari-
ables n;; and the remaining ¢ — r mole numbers (n;; ) are determined
from Eq. (22), subject to the inequality constraints n;; > 0.

In constrained optimization problems, the search space con-
sists of both feasible and infeasible points. For rPEC, feasible points
satisfy all the mass balance constraints, Eq. (21), while infeasible
points violate at least one of them (i.e., nj; <0 wherei=1,...,c—71).
The penalty function method is used to solve the constrained Gibbs

free energy minimization in reactive systems because it is easy to
implement and is considered efficient for handling constraints in
the stochastic methods [2]. For handling these constraints, an abso-
lute value of constraint violation is multiplied with a high penalty
weight and then added to the objective function. In case of more
than one constraint violation, all constraint violations are first mul-
tiplied with the penalty weight, and all of them are added to the
objective function. Specifically, the penalty function is given by

ifvn; >0 i=1,...

E Fobj ., j=1,...,m,
T Fonj +p otherwise,

(23)

where p is the penalty term whose value is positive. In case of infea-
sible solutions (i.e., n;; <0), Gibbs free energy function of phase &
cannot be determined due to the logarithmic terms of the activ-
ity or fugacity coefficients. So, the penalty term used for handling
infeasible solutions in rPEC is given by [2]

Mynf

p=10x Z|nm’
i1

where n;; is obtained from Eq. (22) and n is the number of infea-
sible mole numbers (i.e., nj; <0 where i=1,...,c—r). In this study,
the resulting constrained Gibbs free energy minimization for a reac-
tive system is solved using UBBPSO, IDE_N and IDE algorithms. The
details of the rPEC problems are shown in Table 2.

(24)

5. Implementation of the methods

In this study, all the optimization algorithms and thermody-
namic models are coded in Matlab. The parameters used for the
algorithms are fixed for all problems tested in order to compare the

Table 2
Details of rPEC (chemical equilibrium) problems studied.
rPEC No. System Feed conditions Thermodynamic models Global optimum Ref.
1 A1+A2 < A3+A4 nr=(0.5,0.5, 0.0, 0.0) at 355K NRTL model and ideal gas. —1.298000 [2,6,25]
(1) Ethanol and 101.325 kPa Keq =18.670951
(2) Acetic acid
(3) Ethyl acetate
(4) Water
2 A1+A2 < A3, and A4 as an ng=(0.3,0.3,0.0,0.4) at Wilson model and ideal gas. —1.434267 [2]
inert component 373.15K and 101.325kPa AGOrxs,R =-4205.05 +10.0982T
(1) Isobutene —-0.2667TInT
(2) Methanol InKeq = —AGPxs/R where Tis in K
(3) Methyl ter-butyl ether
(4) n-Butane
3 A1+A2+2A3 < 2A4 ng=(0.354, 0.183, 0.463, 0.0) at Wilson model and ideal gas. —1.226367 [2,21]
(1) 2-Methyl-1-butene 355K and 151.95kPa Keq =1.057 x 10-%4 42735/ where T
(2) 2-Methyl-2-butene isin K
(3) Methanol
(4) Tert-amyl methyl ether
4 A1+A2 - A3+A4 ng=(0.3,0.4,0.3,0.0) at UNIQUAC model and ideal gas. —-0.301730 [2,9]
(1) Acetic acid 298.15K and 101.325 kPa InKeq=450/T+0.8
(2) n-Butanol
(3) Water
(4) n-Butyl acetate
5 A1+A2 < A3 ng=(0.6, 0.4, 0.0) Margules solution model. —1.798377 [21]
8E[RgT=3.6x1X2 +2.4%1X3 +2.3XX3
Keq =0.9825
6 A1+A2+2A3 < 2A4 with A5 as ng=(0.1,0.15, 0.7, 0.0, 0.05) at Wilson model and ideal gas. —0.144508 [21]
inert component 335K and 151.9875 kPa Keq=1.057 x 10-%4 42735/ where T
(1) 2-Methyl-1-butene isin K
(2) 2-Methyl-2-butene
(3) Methanol
(4) Tert-amyl methyl ether
(5) n-Pentane
7 A1+A2 < A3 ng=(0.52, 0.48, 0.0) at 323.15K Margules solution model. —1.043199 [2,9]
and 101.325 kPa Keq=3.5
8 A1+A2 < A3+A4 nr=(0.048, 0.5, 0.452, 0.0) at NRTL model. —1.347857 [2,9]

360K and 101.325kPa

Keq=4.0




136 H. Zhang et al. / Fluid Phase Equilibria 310 (2011) 129-141

robustness of the algorithm. Further, NP=10D for the three meth-
ods: UBBPSO, IDE and IDE_N, and TL=50 and TR=0.001 D are used
in IDE. Altogether, there are 24 problems consisting of 8 PEC, 8 PS
and 8 rPEC problems, whose details can be found in Tables 1 and 2.
All these problems are multimodal with number of decision vari-
ables ranging from 2 to 36. Each problem is solved 100 times
independently with a different random number seed for robust
performance analysis. The performances of stochastic algorithms
are compared based on success rate (SR) and average number of
function evaluations (for both global and local searches) in the 100
runs (NFE), for two stopping criteria: SC-1 based on the maximum
number of iterations and SC-2 based on the maximum number
of iterations without improvement in the gbest objective function
value (SCpax). SC-2 is also known as ImpBest, an improvement-
based stopping criterion.

Note that NFE is a good indicator of computational efficiency
since function evaluation involves extensive computations in appli-
cation problems. Further, it is independent of the computer and
software platform used, and so it is useful for comparison by
researchers. SR is the number of times the algorithm located the
global optimum to the specified accuracy, out of 100 runs. A
run/trial is considered successful if the gbest objective function
value obtained after the local optimization is within 1.0E-5 from
the known global optimum. Also, global success rate (GSR) of dif-
ferent algorithms is reported for all the problems. It is defined as

np
GSR = Z% (25)
i=1

where np is the number of problems and SR; is the individual success
rate for each problem.

In total, three algorithms were tried for solving these problems;
they are IDE, IDE_N and UBBPSO. Later, results of these algorithms
are compared and discussed. At the end of each run by each stochas-
tic algorithm, a local optimizer is used to continue the search to
find the global optimum precisely and efficiently. This is also done
at the end of different iteration levels for analysis; however, global
search in the subsequent iterations is not affected by this. Since all
algorithms are implemented in Matlab, sequential quadratic pro-
gram (SQP) is chosen as the local optimizer. The best solution at the
end of the stochastic algorithm is used as the initial guess for SQP,
which is likely to locate the global optimum if the initial guess is in
the global optimum region. All computations were performed on
Dell Optiplex GX620 with a Pentium 1V, 3.6 GHz and 2 GB of RAM,
which can complete 297 MFlops (million floating-point operations)
for the LINPACK benchmark program for a matrix of order 500.

6. Results and discussion
6.1. Performance of algorithms on PEC problems

First, GSR values for all PEC problems by IDE, IDE_N and UBBPSO
algorithms with NP of 10D using SC-1 are illustrated in Fig. 3. The
results are collected at different iteration levels, starting from 50
to 1500 iteration level, after local optimization at each of these
iteration levels. As expected, GSR improves with increasing num-
ber of iterations (Fig. 3), particularly at lower iteration levels. After
250 iterations, GSR does not improve significantly; this suggests
that subsequent iterations without improvement in the results are
waste of computational resources. For example, GSR of UBBPSO
is 83.5% at 50 iterations; it increases to 88% at 250 iterations and
89.6% at 1500 iterations. GSR of IDE is 83%, 99.9% and 100% at 50,
250 and 1500 iterations, respectively. Results in Fig. 3 show that
IDE has higher reliability and faster convergence rate compared
to IDE_N and UBBPSO, for PEC problems. Further, IDE and IDE_N
can achieve 100% GSR at 1500 iteration level. Thus, it is essential

N UBBPSO EIIDE_N B IDE
100 —

80

60 -

GSR (%)

40 -

20

500

Iterations

Fig. 3. Global success rate (GSR) versus iterations for PEC problems using UBBPSO,
IDEN and IDE with SC-1.

for the optimization algorithm to stop at the right time incurring
least computational resources without compromising reliability of
finding the global optimum.

The effect of stopping criterion, SC-2 on IDE, IDE_N and UBBPSO
algorithms has also been studied on PEC problems. Table 3 sum-
marizes SR and NFE obtained by these algorithms with SCypax =10,
25 and 50 along with the maximum allowable iterations of 1500
(to avoid indefinite looping), all using NP=10D. It shows that relia-

Table 3
Success rate (SR) and number of function evaluations (NFE) of UBBPSO, IDE_N and
IDE for PEC problems using SCmax with NP of 10D.

PEC No. SCiax UBBPSO IDE_-N IDE
SR NFE SR NFE SR NFE
PEC-1 10 71 1303 72 955 75 886
25 89 4151 86 1980 93 1826
50 100 6757 92 4405 98 3407
PEC-2 10 99 1694 100 1326 100 1307
25 100 7898 100 4803 100 3386
50 100 10814 100 7988 100 6021
PEC-3 10 100 1816 100 1253 100 954
25 100 12019 100 5304 100 2916
50 100 18224 100 7396 100 4488
PEC-4 10 67 1414 85 507 83 491
25 88 3491 95 1922 98 1371
50 94 10121 98 4680 100 2669
PEC-5 10 8 9851 5 4101 31 1879
25 9 16619 54 12406 100 6991
50 10 25062 97 14599 100 13116
PEC-6 10 99 60812 99 9441 98 6318
25 100 73893 100 26921 100 17995
50 100 84375 100 31615 100 29251
PEC-7 10 100 22678 99 15044 100 13699
25 100 32835 99 30052 100 35353
50 100 37831 100 47858 100 54626
PEC-8 10 98 116054 96 17456 80 7284
25 99 125860 100 34345 94 19463
50 99 138266 100 38509 100 35456
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Fig. 4. Global success rate, GSR (plot a) and NFE (plot b) of UBBPSO, IDE_N and IDE
for PEC problems using SC-2 (SCmax = 10, SCiax =25 and SCiax =50) and SC-1 (1500
iterations).

bility of the algorithms increases with SCpax, Which requires more
NFE. This is because probability to locate the global optimum region
increases as the algorithms are allowed to run for more iteration.
For PEC problems 1-3 and 6-38, the three algorithms obtained sim-
ilar high reliability; and, for PEC problems 4 and 5, IDE and IDE_N
obtained better reliability than UBBPSO. Even through the same
stopping criterion is used for all the algorithms; NFE required by
IDE is much less than that of IDEN and UBBPSO. As shown in
Table 3, the total NFE required by IDE for all tests on PEC prob-
lems is 271153 compared to 324866 and 823838 for IDE_N and
UBBPSO, respectively. This clearly shows that IDE has faster con-
vergence compared to the others, probably because of prevention
of re-visiting the same place by tabu list and checking.

Fig. 4 summarizes GSR and NFE of IDE, IDE_N and UBBPSO algo-
rithms with four stopping criteria. We obtain the same conclusion
of higher reliability and increased NFE with higher SCpax. It can be
observed in Fig. 4a that the use of SC-2 gives lower GSR compared to
SC-1.However, with the use of SCihax = 50, the reliability of the algo-
rithm is only slightly lower than that with SC-1 (1500 iterations).
Comparison of the three algorithms shows that IDE uses least NFE
to terminate the global search by SC-2. In general, SC-2 requires sig-
nificantly fewer NFE compared to SC-1. Especially, with SCax = 50,
SR obtained by the algorithms is comparable to that obtained with
SC-1 but uses much fewer NFE (Fig. 4). Compared to IDE_N, IDE has
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Fig. 5. Global success rate (GSR) versus iterations for PS problems using UBBPSO,
IDEN and IDE with SC-1.

achieved better reliability with fewer NFE, probably due to the tabu
list and tabu check operations in IDE, which prevents revisiting the
searched areas thus enhancing the global search ability. In sum-
mary, it can be concluded that IDE is better and that SCax =50 is a
good stopping criterion for PEC problems in order to achieve both
high reliability and efficiency.

6.2. Performance of algorithms on PS problems

On PS problems, similar tests using the three stochastic algo-
rithms are performed. As expected, GSR of UBBPSO, IDE_N and IDE
for all PS problems using SC-1 improves with increasing number
of iterations (Fig. 5). The highest GSR is 90.1% obtained by UBBPSO
algorithm. Results in Fig. 5 show that the selected PS problems are
more difficult to optimize compared to PEC problems. At 50 iter-
ations, IDE_N obtained best GSR, but from 100 to 1500 iterations,
GSR of IDE_N did not improve but UBBPSO and IDE obtained better
GSR. In fact, IDE_N has faster convergence but it is easily trapped at
alocal optimum. GSR of UBBPSO is 73% at 50 iterations; it increases
to 84% at 250 iterations and 90% at 1500 iterations. On the other
hand, GSR of IDE is 73%, 87% and 88% at 50, 250 and 1500 iterations,
respectively. This performance indicates that reliability of the algo-
rithm did not improve significantly after 250 iterations. Thus, it is
necessary to use a suitable stopping criterion for the optimization
algorithm to stop at the right time incurring least computational
resources without compromising reliability of finding the global
optimum.

Results on the effect of stopping criterion, SC-2 with SCpax = 10,
25 and 50 on IDE, IDE_N and UBBPSO for all PS problems are pre-
sented in Table 4. They show that reliability of the algorithm and
NFE increase with increasing SCpax. For PS problems 1 and 5, IDE_N
obtained the best reliability followed by IDE algorithm. For PS prob-
lems 2, 3, 4 and 7, the three algorithms obtained 100% SR. For PS
problems 6 and 8, UBBPSO obtained the best reliability followed by
IDE. However, UBBPSO and IDE_N require significantly more NFE
than IDE. Even through the same stopping criterion is used for the
three algorithms, NFE required by IDE is much less than that of
IDE_N and UBBPSO. For example, for PS-8 with SC,ax =50, UBBPSO
needs 147533 NFE but IDE requires only 70996 NFE. As shown in
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Table 4
Success rate (SR) and number of function evaluations of UBBPSO, IDE_N and IDE for
PS problems using SCpax with NP of 10D.

PSNo.  SCmax  UBBPSO IDE-N IDE
SR NFE SR NFE SR NFE
PS-1 10 85 1274 93 594 89 582
25 97 3686 100 2518 99 2631
50 99 6051 100 3553 100 3789
PS-2 10 100 2536 100 2227 100 1448
25 100 7880 100 5756 100 6536
50 100 10515 100 6571 100 9053
PS-3 10 100 3342 100 1741 100 1250
25 100 8906 100 4721 100 4747
50 100 14856 100 6144 100 7619
PS-4 10 100 827 100 822 100 781
25 100 2310 100 2339 100 2437
50 100 4096 100 3369 100 3321
PS-5 10 56 21272 69 4033 46 2051
25 78 31777 99 10573 82 10055
50 92 44606 100 13285 99 19487
PS-6 10 73 74920 47 9296 45 3633
25 90 93490 62 25816 72 15148
50 94 105846 62 30045 76 38145
PS-7 10 100 64859 100 18020 100 5417
25 100 90780 100 45681 100 10253
50 100 105697 100 50074 100 14161
PS-8 10 25 127894 7 17033 9 5470
25 26 140833 7 31647 10 20997
50 26 147533 7 36894 21 70996

Table 4, the total NFE required for all PS problems by IDE is 260007
compared to 332752 and 1115786 required by IDE_N and UBBPSO,
respectively. Thus, UBBPSO requires more than 4 times the total
NFE required by IDE. Hence, IDE has faster convergence compared
to IDE_N and UBBPSO, probably due to tabu list and checking.

Fig. 6 summarizes GSR and NFE of IDE, IDE_N and UBBPSO with
four stopping criteria for PS problems. We obtain the same conclu-
sion of higher reliability and increased NFE with higher SCiax. It can
be seen from Fig. 6a that the use of SC-2 gives similar GSR compared
to SC-1; especially, GSR of IDE_N with different stopping criteria is
similar. Among the three algorithms, IDE uses least NFE to termi-
nate the global search in case of SCrax = 10 and SCpax =25 whereas
IDE_N uses the least NFE to terminate the global search progress for
SCmax =50 (Fig. 6b). In general, use of SC-2 has significantly reduced
NFE compared to that using SC-1. As for PEC problems, it can be
concluded that IDE is better and that SCrpax =50 is a good stopping
criterion for PS problems in order to achieve both high reliability
and efficiency.

Low SR is obtained for PS-5, 6 and 8 compared to other PS prob-
lems (Table 4). This is probably because of using the same NP=10D
for comparing the three algorithms studied in this paper. In general,
NP is a user-specified parameter; it does not need to be fine-tuned
and just a few typical values can be tried according to the pre-
estimated complexity of the given problem. So PS-5, 6 and 8 are
solved by IDE with higher population size of NP =50D. The results
show that IDE can obtain 100% SR using 24930 NFE for PS-5, 100%
SR using 61820 NFE for PS-6 and 76% SR using 384416 NFE for PS-8.
It is clear that reliability of the algorithm increases with population
size but this requires more computational effort. This is reasonable
because larger population size enables more thorough exploration
of search space. In general, stochastic optimization methods pro-
vide only a probabilistic guarantee of locating the global optimum,
and their proofs for numerical convergence usually state that the
global optimum will be identified in infinite time with probability 1
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Fig. 6. Global success rate, GSR (plot a) and NFE (plot b) of UBBPSO, IDE_N and IDE
for PS problems using SC-2 (SCmax =10, SCmax =25 and SCpax =50) and SC-1 (1500
iterations).

[42-44]. So, better performance of stochastic methods is expected
if more iterations and/or larger population size are used.

To analyze further, performance if IDE is compared with that of
other stochastic optimization algorithms, namely, SA, very fast SA
(VFSA), modified version of direct search SA (MDSA) and stochastic
differential equations algorithm (SDE) for PS-3, 5, 6 and 8 reported
in Bonilla-Petriciolet et al. [21], in Table 5. From this table, it is clear
that IDE uses about 10 times fewer NFE compared to the other four
stochastic methods for solving PS-3, 5 and 6 with the same reliabil-
ity. SR of IDE is lower for PS-8 but using significantly less NFE, and
this may due to the different stopping criteria and population size
used in the algorithms. Note that some methods may give better
reliability using the stopping criteria based on either known global
optimum or the number of generations [21]. However, the use of
known global optimum is not applicable for new problems whose
global optima are unknown, and use of number of generations may
require large computational time.

Bonilla-Petricioletetal. [6] compared various PSO algorithms for
solving the PEC and PS problems. Their results suggest that the clas-
sical PSO outperforms other variants of PSO. So, the performance
of IDE and UBBPSO is compared with two classical PSO algorithms
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Table 5

Comparison of SR and NFE of IDE with other stochastic algorithms for selected PS problems.

PS No. MDSA [21] SA[21] VFSA [21] SDE [21] IDE (NP=10D) IDE (NP=50D)
Ps-3 NFE 82611 92422 42944 449574 1250 -
SR 100 100 100 100 100 -
PS-5 NFE 263980 266926 129534 565142 19487 24930
SR 100 100 96 100 99 100
PS-6 NFE 752571 700865 362097 476029 38145 61820
SR 100 100 100 100 76 100
PS-8 NFE 1167211 1104901 581396 958515 70996 384416
SR 100 100 98 98 21 76

reported in Bonilla-Petriciolet et al. [6] for both PEC and PS prob-
lems, with different types of stopping criteria in Fig. 7. The two PSO
algorithms are classical PSO with quasi-Newton method (PSO-CQN)
and classical PSO with Nelder-Mead simplex method (PSO-CNM).
Fig. 7a shows that IDE achieved the best reliability at 100 iterations
or more, compared to UBBPSO, PSO-CQN and PSO-CNM. UBBPSO
achieved the second best reliability at different iteration levels
among the four algorithms tested with SC-1. The reliability compar-
ison of the four algorithms with SC-2 stopping criterion is shown in
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Fig. 7. Global success rate of PSO-CQN, PSO-CNM and IDE in PEC and PS prob-
lems using: (a) SC-1 and (b) SC-2 (SCmax = 10, SCmax =25 and SCiax = 50) as stopping

criteria.

Fig. 7b. IDE gave the highest GSR even with SC-2 as stopping criteria
with SCrax =25 and 50, among the four algorithms. With stopping
criterion, SCmax = 10, UBBPSO obtained slightly better GSR than IDE
but much better GSR than PSO-CQN and PSO-CNM. Overall, IDE is
superior to UBBPSO, PSO-CQN and PSO-CNM algorithms for PEC
and PS problems.

6.3. Performance of algorithms on rPEC problems

GSR of UBBPSO, IDE_N and IDE algorithms for all rPEC problems
using SC-1 is illustrated in Fig. 8. It can be seen that GSR generally
improves with increasing number of iterations for these problems
as well. The highest GSR is 91% obtained by IDE. At 50 iterations,
IDE_N obtained best GSR, but from 250 to 1500 iterations, its GSR
did not improve; on the other hand, UBBPSO and IDE obtained bet-
ter GSR at higher iterations. GSR of UBBPSO is 80% at 50 iterations,
and it increases to 87% at 250 iterations and 90% at 1500 itera-
tions. GSR of IDE is 77%, 85% and 91% at 50, 250 and 1500 iterations,
respectively. In short, UBBPSO, IDE_N and IDE algorithms obtained
good GSR of 80% or more (Fig. 8).

Results obtained on the effect of stopping criteria on the three
algorithms using SC-2 with SCphax=6D, 12D and 24D, for rPEC
problems are summarized in Table 6. Note that SCpax values used
for each rPEC problem were those used by Bonilla-Petriciolet et al.
[2] so that the present results can be compared with those in [2].

100:5 QUBBPSO  MIDELN  @IDE

GSR (%)

Iterations

Fig. 8. Global success rate (GSR) versus iterations for rPEC problems using UBBPSO,
IDE_N and IDE with SC-1.
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Table 6
Success rate (SR) and number of function evaluations of UBBPSO, IDE_N and IDE for
rPEC problems using SCpax with NP of 10D.

rPEC No. SCinax UBBPSO IDE_.N IDE
SR NFE SR NFE SR NFE
rPEC-1 6D 100 21585 100 14484 100 5585
12D 100 47720 100 16102 100 14720
24D 100 68953 100 19387 100 16641
rPEC-2 6D 100 33794 100 13012 100 12698
12D 100 61252 100 14511 100 16559
24D 100 70037 100 17511 100 18885
rPEC-3 6D 100 14896 100 14928 100 8143
12D 100 29376 100 16461 100 14157
24D 100 47986 100 19460 100 27034
rPEC-4 6D 10 23107 1 11676 9 10312
12D 13 34655 1 14394 17 13765
24D 14 44068 1 19014 17 20763
rPEC-5 6D 93 14792 98 8794 90 2644
12D 98 32370 99 12160 98 5664
24D 98 43177 100 15793 100 11264
rPEC-6 6D 100 39571 100 18361 100 19504
12D 100 43742 100 22175 100 21135
24D 100 50421 100 28628 100 29150
rPEC-7 6D 90 16129 99 9229 90 2546
12D 97 28041 100 11945 97 4680
24D 98 33326 100 14001 98 10330
rPEC-8 6D 100 22954 100 15487 100 5780
12D 100 25941 100 18652 100 10411
24D 100 31014 100 23720 100 23117

Table 6 shows that reliability of the algorithm increases with SCrax
but requires more NFE. For rPEC-1, 2, 3, 6 and 8, UBBPSO, IDE_N
and IDE algorithms obtained 100% SR with different SCpax tried.
For rPEC problem 4, IDE obtained the best reliability followed by
UBBPSO and IDE_N, but its SR is only 17%. So rPEC-4 is solved by
IDE using larger population of NP =50 D. The results show that IDE
can obtain 88% SR at 118108 NFE. Among the three algorithms, NFE
required by IDE is much less than that by IDE_.N and UBBPSO. As
shown in Table 5, total NFE required by IDE for all rPEC problems is
325487 compared to 389885 by IDE_N and 878907 by UBBPSO. On
the other hand, mean SR for the three algorithms is almost the same.
Thus, our results show that IDE has faster convergence compared
to IDE_N and UBBPSO for the same reliability.

Fig. 9 shows the performance of GSR and NFE of IDE, IDE_N and
UBBPSO with different stopping criteria for rPEC problems. Again,
we conclude that the higher the SCpax, the better the reliability of
the algorithm is, and that the use of SC-2 gives similar GSR com-
pared to SC-1 (Fig. 9a). However, IDE_N gave almost the same GSR
with different stopping criteria. Among IDE, IDE_.N and UBBPSO,
IDE uses least NFE to terminate the global search progress via SC-
2. Between IDE and IDE_N, results show that IDE provides better
reliability with fewer NFE (Fig. 9), probably due to enhancement of
global search ability by tabu list and tabu check operations in IDE.
For optimal efficiency and reliability of IDE, SCmax =12D is a good
stopping criterion for rPEC problems.

Recently, SA, DETL and GA have been tested for rPEC problems
in [2]. All these stochastic algorithms were run 100 times inde-
pendently in FORTRAN environment. At the end of every run, a
deterministic local optimizer (namely, DBCONF of IMSL library) was
activated. The performance of IDE is compared with that GA, SA
and DETL for rPEC problems, in Table 7. The data of IDE in Table 7
is slightly different from those in Table 5 because NFE given in [2]
is based on successful runs only (and not all runs). For fair compar-
ison, similar data of IDE are given in Table 7. From this table, it is
clear that IDE achieved the best reliability compared to SA, GA and

a 100 4 SCmax =6D OSCmax=12D MSCmax=24D M@SC-1(1500 Iter)

90 -

GSR (%)

70 -

60 -

LTI

-,

50

SA GA DETL UBBPSO IDE_N IDE
Algorithms

MSCmax = 6D OSCmax = 12D MmSCmax = 24D ESC-1 (1500 Iter)

NFE / 1000

SA GA DETL
Algorithms

UBBPSO IDE_N IDE

Fig.9. Global successrate, GSR(plota)and NFE (plotb) of UBBPSO, IDE_N, IDE, SA, GA
and DETL for rPEC problems using SC-2 (SCmax =6 D, SCmax =12 D and SCpax =24 D)
and SC-1 (1500 iterations).

DETL at SCnax =6 D, 12D and 24 D. For example, for rPEC problems
5 and 7, IDE obtained much better SR than the other algorithms.
However, IDE requires more NFE compared to GA and DETL. This
indicates that GA and DETL have faster convergence rate for rPEC
problems but they can be trapped at the local optimum in several
runs. The computational time (in s) for solving rPEC problems using
IDE algorithm with SCpax =6 D, 12 D and 24 D is reported in the last
column of Table 7. Obviously, CPU times increases with NFE. Fur-
ther, there is nearly linear relationship between NFE and CPU time,
which supports the use of NFE for comparison.

For rPEC 4, at SCrax =6 D, GA and SA are better than IDE in terms
of both SR and NFE. When SChax =12 D, IDE is more reliable than
GA and SA but with more NFE. When SCnyax =24 D, the IDE is bet-
ter than GA and SA in both SR and NFE. This is probably due to
the self-adaptive strategy of IDE which needs more generations
initially for adaptive tuning of algorithm parameters. For high reli-
ability of GSR=85%, GA requires SCmax of 24D and NFE of 12138
whereas IDE requires SCpax of 12D and NFE of 12375 to obtain
89% GSR. This shows that IDE uses 2% more NFE to improve GSR by
4%. Further, IDE has fewer parameters to be tuned, which makes
the algorithm more robust. In summary, the present results indi-
cate that IDE offers a good balance between diversification and
intensification stages for reliable and efficient phase equilibrium
calculations in both reactive and non-reactive systems. Compared
to other stochastic methods, its reliability and efficiency are gener-
ally better for solving these thermodynamic problems.
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Table 7
Success rate (SR) and number of function evaluations of SA, GA, DETL and IDE for rPEC problems using SCmax with NP of 10D.
rPEC No. SCrmax SA[2] GA[2] DETL[2] IDE Time (s)
SR NFE SR NFE SR NFE SR NFE

rPEC-1 6D 93 5544 89 4650 100 7791 100 5585 3
12D 99 10818 98 7866 100 9787 100 14720 7
24D 100 44083 99 13228 100 11548 100 16641 9

rPEC-2 6D 98 4703 99 4465 100 4237 100 12698 6
12D 100 10159 100 7363 100 5708 100 16559 10
24D 100 35837 100 12464 100 6665 100 18885 12

rPEC-3 6D 95 4740 98 4670 100 6366 100 8143 5
12D 100 9299 100 7484 100 8017 100 14157 8
24D 100 32630 100 12680 100 10893 100 27034 15

rPEC-4 6D 11 4460 15 4234 1 10621 9 6799 3
12D 10 8396 11 7065 1 15420 17 11647 6
24D 11 29589 17 12136 2 22043 17 11652 6

rPEC-5 6D 71 2401 63 2403 88 2235 90 2706 2
12D 76 4725 73 4224 86 2705 98 5685 4
24D 79 9508 70 8292 92 3205 100 11264 7

rPEC-6 6D 99 8038 100 6420 100 4859 100 19504 11
12D 100 18759 100 10708 100 5994 100 21135 14
24D 100 66336 100 17623 100 8532 100 29150 19

rPEC-7 6D 56 2690 58 2913 65 3955 90 2573 1
12D 55 5389 70 4584 77 4985 97 4682 2
24D 61 13599 90 8257 85 5713 98 10338 5

rPEC-8 6D 92 5733 95 4906 100 4057 100 5780 2
12D 98 11096 98 7777 100 5036 100 10411 4
24D 98 31887 100 12420 100 6124 100 23117 10

7. Conclusions

The stochastic global optimization algorithms, namely, UBBPSO,
IDE_N and IDE studied in this work have fewer parameters to be
tuned. The performance of these algorithms has been tested and
compared for solving PEC, rPEC and PS problems. IDE was found
to be the overall best performer across different problems tried.
Results for IDE and IDE.N confirm that use of tabu radius and
tabu list improves reliability and decreases computational effort
although it involves two parameters. Comparison of IDE with PSO
variants for both PEC and PS problems shows that the IDE provides
higher reliability and efficiency. Comparison of IDE with SA, GA and
DETL suggests that the former provides higher reliability for rPEC
problems. The stopping criterion, SC-1 gives slightly better relia-
bility than SC-2 at the expense of computational resources, and
the use of SChax can significantly reduce the computational effort
for solving PEC, rPEC and PS problems without much effect on the
reliability of the stochastic algorithms studied.
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